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for a Dense Lennard-Jones Fluid 
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For a large region of dense fluid states of a Lennard-Jones system, we have 
calculated the friction coefficient by the force autocorrelation function of a 
Brownian-type particle by molecular dynamics (MD). The time integral over 
the force autocorrelation function showed an interesting behavior and the 
expected plateau value when the mass of the Brownian particle was chosen to be 
about a factor of 100 larger than the mass of the fluid particle. Sufficient 
agreement was found for the friction coefficient calculated by this way and that 
obtained by MD calculations of the self-diffusion coefficient using the common 
relation between these coefficients. Furthermore, a modified friction coefficient 
was determined by integration of the force autocorrelation function up to the 
first maximum. This coefficient can successfully be used to derive a reasonable 
"soft part" of the friction coefficient necessary for the Rice-Allnatt 
approximation for the shear viscosity of simple liquids. 

KEY WORDS: Transport coefficients; kinetic theory; Brownian dynamics; 
time-dependent properties of liquids and fluids; molecular dynamics; diffusion. 

1. I N T R O D U C T I O N  

In a previous work, (1) we compared the Rice-Allnatt theory with exact 
molecular dynamics results for the shear viscosity of dense fluids. The Rice- 
Allnatt equations require the "soft" part of the friction coefficient (s for the 
evaluation of the shear viscosity constant. So we attempted to calculate (s 
directly by MD using a Brownian-type particle. As these computations led 
partly to inconsistent results in comparison with those obtained by the self- 
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diffusion coefficient, we undertook a systematic investigation to elucidate 
these differences between the values of the friction coefficient obtained by 
these two methods. To compute ~ via the motion of a Brownian-type par- 
ticle we used the time integral over the force autocorrelation function 
(FACF), but integrated only over a certain period of time. This method 
can be derived from the properties of the Langevin equation. It will be 
described in detail in later sections. The time integral over the FACF was 
already discussed by Kirkwood and coworkers (2) and since that time has 
often been cited in later research. ~3 5) We know, however, of no attempt to 
calculate this quantity by MD, with the exception of the work of Fisher et 

al. ~61 These authors did compute the total FACF by MD, but considered a 
fluid particle itself and could not obtain sufficient information on ~. 

2. DEFIN IT ION OF THE FRICTION COEFFIC IENT 
BY THE LANGEVIN E Q U A T I O N  

The motion of one Brownian particle in a liquid is describable by the 
ordinary Langevin equation. The Brownian particle is thereby idealized in 
the sense that it is large and massive enough to experience a resistive force 
corresponding to Stokes' law and that it is small enough to respond to fluc- 
tuations of the fluid molecules. We give the stochastic equation in terms of 
the total force F(t) acting on that particle: 

F(t) = X ( t ) -  ( l / M )  p (1) 

where ~ denotes the friction coefficient, M the mass of the Brownian par- 
ticle, p the momentum, and X(t) the fluctuating force with statistical 
properties. 

The X(t) is assumed to vanish in the mean, to be uncorrelated with the 
velocity, and to have an infinitely short correlation time (see, for instance, 
Ref. 7, p. 275). 

By integrating Eq. (1), we can derive an expression of the following 
form for the total FACF (Ref. 3, pp. 258-260): 

(F( t )  F(t + r))(1) 

= 3~o(~) - 3 k T ( ~ Z / M )  e (~/M)~ + ( ~ / M )  2 e -(~/~t~(2` + ~)(pg - 3 M k T )  (2) 

where the (.. .)(~) denotes the average over particles with initial momen- 
tum Po, q)(z) denotes a sharply peaked function of time z, proportional to 
~, compared to the time scale of the Brownian motion (Ref. 3, pp. 256-259; 
Ref. 8), k is the Boltzmann constant, and T is the equilibrium temperature. 

In the limit of a particle of very large size and mass compared with the 
fluid particles, Eq. (2) gives the correct description of the FACF. However 
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in a M D  computation, this equation can only hold approximately, since 
the large size of the particle cannot be modeled by M D  without changing 
appreciably the molecular interaction. 

Integration of Eq. (2) over ~ shows that the first two terms on the 
right-hand side cancel (compare Ref. 3, pp. 256-259) and the third term 
yields 

f0~ (F( r )  F(t  + r) )(1) dr = (~/M) e-2(~/M)'(p~ _ 3 M k T )  

and proceeding to the average over initial momenta, we find 

f0~ (F(0) V(r)) & =0 (3) 

So in this limit, we lose the information about ~. However, if ~0(r) is in fact 
a rapidly decaying time function relative to the time scale involved in the 
Brownian motion, Eq. (2) can be exploited for a determination of ft. After 
averaging over the initial momenta, the equilibrium value of the FACF is 
given by the first two terms of the right-hand side of Eq. (2) if we have the 
following conditions: 

(i) q ) ( r )=0  for r > r l  

where v I denotes the correlation time of the fluctuating force X(t), and 

(ii) r l ~ M / ~  

where M/~ is the decay rate of exponentials appearing in Eq. (2). 
In that case, the total FACF has large, positive values at short times 

and small, negative values for longer times. The integral of ( F ( 0 ) F ( r ) )  is 
given by (Ref. 3, pp. 256-259) 

f~2 I ( % ) =  3 ~o(r)dr+3~kT(e-( ; /" )~2-1)  (4) 

where r2 denotes an arbitrary time, 0 ~< r ~< r2. The first term of the right- 
hand side of Eq. (4) reaches its maximum value very quickly, while the 
second term is still small. We have 

1(%) = 3 (kT[  1 - ((/m) % + ""]  ,,~ 3 ( k T  

where we have used the relation 
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So the integral of the total force autocorrelation function reaches a 
"pseudoplateu," from which it falls back to zero in times of order (M/~). 
The friction coefficient should therefore be calculable by the integral of the 
total FACF for a certain period of time %: 

lf 2 ~ = 3 ~  (F(0) F(~)) &; z2<r l  ~-~- (5) 

3. FORCE AUTOCORRELATION FUNCTION FOR A 
FLUID PARTICLE 

Before discussing the described method for determining ~, we illustrate 
by simple equilibrium molecular dynamics calculations (MDC) that this 
method cannot be applied to a fluid particle itself. In that case the 
autocorrelation function of the projected force has to be used (9) (see dis- 
cussion in Section 7). 

Our MDC were performed for 256 particles in the NVEp-ensemble, 
where N denotes the particle number, V the volume, E the total energy, 
and p the total momentum of the system. The particles were enclosed 

Table I. Technical Details of the M D  Calculations 

A, MD 
Particle numbers 
Equilibration time steps 
Production time steps 

Time step 

Cutoff radius 
Number of uncorrelated time origins 

for the correlation functions 
of the Brownian-type particle 

256; 500; 864 
500-1500 
5000 for fluid particle 

correlation functions) 
50,000-80,000 (for 

correlation functions of 
the Brownian-type particle) 

1 x 10 -14 sec( -~O.032[ma2/(48e)] 1/2; 
m the atomic mass of argon) 

2.5a 
2500-4500 

B. Pair potential 
Lennard-Jones (12-6) with argon parameters 

elk (k the Boltzmann constant) 119.8 K 
a 3.405/~ 

C. Reduced quantities 
n* = (N/V)a 3 (Vthe volume of the system) 
T* = Tk/~ 
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in a cubic box with periodic boundary conditions. The St6rmer-Verlet 
integration algorithm was used and the pair potential was represented by 
the commonly employed Lennard-Jones (12-6) potential. Table I contains 
information about the details of the runs and the potential. 

It should be noted that the results obtained for the correlation 
function (CF) of a fluid particle did not require more than 2 rain CPU 
time(s) of a vector computer like the Cyber 205. This is in sharp contrast 
to the calculations described in later sections. Though the CF of the fluid 
particle was determined previously by Fisher and Watts (6), we have 
recalculated it to have the reference for our chosen thermodynamic state of 
n*=0.85  and T * =  1.0. 

In Fig. 1 we plot the FACF of a model fluid particle as a function of 
time together with the time integral over this CF. In agreement with the 
considerations of Section 2 and with earlier MD computations, (6) we find: 

1. The FACF has large positive and negative parts at short times of 
about 0.2 psec. The area below the positive part of the FACF and the area 
above the negative part cancel each other and thus the integral over times 
larger than 0.2 psec vanishes. 
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Fig. l. ( x ) Force autocorrelation function and ( � 9  the time integral over this function of a 
fluid particle. Both functions have been normalized: the FACF by its initial value, the integral 
by its maximal value. Thermodynamic state: n* = 0.85, T* = 1.0. 
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2. The integral over the FACF increases and decays rapidly, showing 
no plateau value. 

3. The correlation time of the fluctuating force ~1 might be of the 
order of the decay time of the FACF (decay for l/e), being ~0.15 psec. 

Since we have chosen a fluid particle of mass m for the determination 
of the FACF, we are not able to find a time z2 such that 

z, < ~2 ~ m/{ (6) 

is valid. 
In the argon model studied, we have roughly a value of 0.5 psec for 

m/{ and a value of 0.2 psec for ~1. So the second relation of (6) is violated 
and the integral cannot show a plateau-type behavior. This is indeed the 
finding illustrated in Fig. 1. A determination of ~ by the total FACF of the 
fluid particle is thus impossible. 

4. MOLECULAR D Y N A M I C S  FOR A B R O W N I A N  PARTICLE 
OF THE M O D E L  FLUID 

From the results of Section 3 we conclude that the mass of the Brow- 
nian particle must be of order ten times the mass of the fluid particle to 
generate an integral over the FACF that shows a plateau-type behavior. 
For  M/m = 20, we have M s  of about 10 psec, while the correlation time of 
the fluctuating force remains at zl ~0.15 psec. So we can easily find a time 
s such that 0.15 < s ~ 10 psec is valid. Enhancement of the mass of all the 
fluid particles will not help, since then ~l grows equivalently. The 
separation of the time scales of the Brownian and the fluid particles is of 
course substantial. 

Consequently, we have performed MD for 255 fluid particles and one 
Brownian particle, the latter differing only in mass from the others. 
However, calculations of this type are substantially more extensive than 
those reported in the previous section. The correlation function must be 
evaluated from the trajectory of the massive particle alone. Therefore, the 
averaging level can only be enhanced by extending this trajectory in time. 
We indeed used runs of 50,000-80,000 integration steps to ensure 
2500-4000 uncorrelated time origins for an accurate evaluation of the CF 
(see Table I). (1~ 

For  two different temperatures at the same density of n*=0.85,  we 
have plotted the FACF of the Brownian particle for mass ratios of 
M/m = 60 and 100 in Fig. 2 and 3. The plots confirm roughly what we 
expected from the discussion in Section 2. A positive part of the FACF 
appears for the time interval between 0 and 1.5 psec, while for larger time 
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the function becomes negative, but with a very small amplitude. The 
integrals over the FACF, which are also displayed in these figures, show a 
maximum near 0.25 psec and a pseudoplateau near .75 and 2.0 psec. For 
later time, the integral decays markedly, as is only seen in Fig. 2. 

In Fig. 4, we compare the velocity autocorrelation function (VACF) of 
the Brownian and the fluid particles for T* = 1. The large separation of the 
two times scales is evident, being characteristic of Brownian motion. We 
see additionally that the u  of the massive particles is to a good 
approximation exponential (Ref. 3, pp. 437443).  

We have checked the mass dependence of the plateau value of the 
integral. Results are compared in Figs. 5 and 6, where for three different 
mass ratios the integral value is plotted as a function of time. Apparently 
for T* = 1 the mass ratio of 16 and for T* = 2 that of 20 do not suffice to 
produce a plateau. On the other hand, for mass ratios larger than 40 and 
larger than 100 in the case of T* = 2 the plateau value is accessible by MD 
calculations and seems to be independent of the mass ratio, at least within 
the statistical error of the computation. 

However, the mass ratio must not be enhanced too much, since then 
the dynamics of the Brownian particle is violated, since it is not able to 
follow the erratic motion of the fluid particles on a discrete time scale. We 
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Fig. 4. Velocity autocorrelation function of a fluid particle (x x x) and the Brownian particle. 
Both functions are normalized by their initial values. Mass ratio: 60. State: n* = 0.85, T* = 1.O. 
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Fig. 7. As in Fig. 2, but for the mass ratio 120. 

illustrate this by plots of the FACF and the integral for T* = 1 and M/m = 

120 in Fig. 7. Here the FACF shows a perturbed behavior around 0.25 psec, 
and consequently the integral has no plateau value. 

5. C O M P A R I S O N  OF THE FRICTION COEFFICIENT 
CALCULATED BY THE FACF A N D  BY THE 
SELF-DIFFUSION COEFFICIENT 

We have calculated ~ using the pseudoplateau value of the integral 
over the FACF for 3-5 temperatures and reduced densities of 0.70-0.85. 
Simultaneously we have determined the self-diffusion coefficient D via the 
VACF of the fluid particle, which we have integrated over a time of 
2.4 psec (compare Fig. 4). Using the relation 

= k T / D  (7) 

we obtained a second number for ~, which has a statistical error of 5 %. 
Errors due to temperature differences do not occur, since we used the same 
runs for the determination of both numbers. 
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The results for the friction coefficient obtained by these two methods 
are summarized in Table II. Agreement between both sets of numbers is 
evident, although deviations of 10% exist. However, these discrepancies lie 
within the mutual error bars for these quantities. The value given in 
parentheses represents the result from a computation with a larger particle 
number. It agrees well with the other data, indicating that a systematic 
failure is not present. One additional remark sould be in order. All the 
states considered are liquid or fluid states, which correspond to pressures 
between 0 and 3000 bar. 

6. E V A L U A T I O N  OF A "SOFT  PART"  OF i; USABLE 
FOR THE R ICE-ALLNATT THEORY OF THE SHEAR 
V I S C O S I T Y  OF S I M P L E  FLUIDS 

To exploit the Rice-Allnatt theory 13'4) for the determination of the 
shear viscosity r/ of a fluid, a "soft" and a "hard" part of the friction coef- 
ficient (s and ffh have to be known. Such a splitting of ff is not uncritical 
and a bit arbitrary. (11) We have, however, attempted to determine a 
reasonable separation of the friction coefficient into these parts by 
introducing a modified total friction coefficient ~ that coincides with ~ for 
the liquid range, but varies with temperature similar to the "hard" part of 
~. This "hard" part ~h is usually evaluated by the formula of Enskog (3'12) 
(see Appendix). It can also be computed by MD using the FACF of a fluid 
particle and integrating up to the zero crossing of that function. 

Table II. Comparison of Values for the Friction Coefficient Obtained 
by the FACF of a Massive Particle (M/m=60-180) (Method A) and the 

Self-Diffusion Coefficient of the LJ Fluid via the VACF (Method  B) a 

n* =0.85 n* =0.80 n* =0.75 

T* A B A B A B 

0.70 7.4 h 7.5 . . . .  

0.87 6.8 6.5 5.2 4.9 - -  - -  
0.98 6.4 6.4 5.1 4.9 3.95 3.75 

(6.1)" 
1.50 6.2 5.8 4.3 4.6 3.65 3.70 

1.97 5.5 5.6 4.6 4.7 3.90 3.70 

The statistical uncertainty for the value of the friction coefficient is 8 % for method A and 
5 % for method B. 

b in  Units of 10 -13 kg sec -1 [divide by 2.1404• -13 to convert into reduced units of 
(48mg/~r2)l/2]. 

' From computations with 864 particles. 
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Commonly the "soft" part of ~ is obtained by subtraction of ~h from ~, 
with ~ computed by numerical methods or taken from experiment. Using 
this difference, one finds an unreasonably steep decay of ~s with tem- 
perature when ~ is obtained from MD by any of the computations 
described in Section 5. To avoid this strong decrease of ~, with tem- 
perature, which causes disagreement between predictions of t /by the Rice- 
Allnatt theory and MD results, we introduced a modified total friction con- 
stant ~m determined by the integral of the FACF of a massive particle up to 
the first maximum value. This can be done by MD calculations with a high 
accuracy of 3-5%. The reasons for this are: (i) the maximum of the FACF 
is always well determinable for mass ratios of 15-60 for the Brownian par- 
ticle; (ii) the mass dependence of the integral value at this maximum is 
nearly a linear function of m/M; (iii) extrapolation of the integral value to 
m/M = 0 is easily done with a few computations for different mass ratios. 
An example is presented in Fig. 8, where for three temperatures and at a 
density of 0.85, the integral value, i.e., the friction coefficient ~,~, is plotted 
against the inverse mass ratio. Table III contains the extrapolated values 
for m/M=O together with ~h computed from the Enskog formula (see 
Appendix). The difference between ~,~ and ~h yields a "soft" part of the fric- 
tion coefficient ~ that is approximately independent of temperature in the 
range investigated here. With this ~,, the Rice-Allnatt equations predict 

7s 

6.0 

5.0 

~,C 
0 

Fig. 8. 

~m.10131kgs -1 

. A ' - . . A . ~  n *  = 0.85 

T *  1,5 

T *  1.0 

mlM 
I I I -- 

0.1 0.2 0.3 
Modified friction coefficient ~,~ determined by the FACF as a function of the inverse 

mass ratio rn/M for various thermodynamic states. 
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Table III. Modi f ied  Friction Coeff ic ient  ~r. Determined by 
M D  Compared wi th  the "Hard"  Part of the 

Friction Coeff ic ient  Calculated by the Enskog Equation 

T* 
~m ~m 

10 13 kg sec -1 10 -13 kg sec q 

0.75 5.9 3.32 
0.90 6.1 3.46 
1.0 6.0 3.51 
1.5 6.5 3.75 
2.0 6.9 3.94 

a n*= 0.85. Statistical error for (,~ is 5 %. 

fairly well the density and  temperature  dependence of the shear viscosity in 
the fluid and  liquid region of the LJ system compared  with direct M D  
results. (1) 

For  i l lustrat ion of the temperature  dependence of ~, and  ~h, we show 

these quanti t ies  as a funct ion of the reduced temperature  in Fig. 9. 

Fig. 9. 
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"Soft" and "hard" parts of the friction coefficient determined by MD and calculated 

by the Enskog equation. 
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7. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We have shown that the friction coefficients obtained by integration of 
the FACF of a Brownian-type particle and calculated by the self-diffusion 
coefficient of the fluid agree well when mass ratios of 60-180 are used. For 
all the states investigated, we found a first maximum of the integral over 
the FACF near 0.25 psec and a pseudoplateau value after about 1 psec for 
mass ratios of 20-60. This first maximum of the integral value was 
exploited to determine a second modified friction coefficient, which agrees 
with the genuine ~ in the liquid range of the model system, but has a dif- 
ferent temperature dependence. While the latter decreases with tem- 
perature, the former grows slightly. The modified friction coefficient 
involves a larger, "hard" contribution, which governs its temperature 
dependence at high-temperature states. This is nicely confirmed by Fig. 3, 
which displays that the maximum of the integral value is about 20% higher 
than the pseudoplateau value due to the fact that the negative part of the 
FACF (also shown in the figure) does not contribute to the maximum. 
Such a behavior of ~m is better suited for the Rice-Allnatt theory, which 
seems to require a very weak temperature dependence of the "soft" part of 
the coefficient, as we have shown by comparison with "exact" machine 
data.(t,u) 

The computations of ~ via the force autocorrelation function will be 
continued using a fluid particle itself. However, in that case, we have to 
consider the generalized Langevin equation, of which the generalized dis- 
sipation coefficient is given by (9) 

;;(s) 
~ ( s )  - 

1 - s - l ~ ( s )  

~;(s) is the Laplace-transformed autocorrelation function of the generalized 
force. 

A P P E N D I X  

The "hard" part of the friction coefficient ~h can be calculated by the 
Enskog relation (3'12) 

~h = ~d2 g(d)(~mkT) 1/2 

where g(d) denotes the hardsphere pair correlation function at the hard 
sphere parameter d of the equivalent hard sphere potential, p denotes the 
number density, m the particle mass, k the Boltzmann constant, and T the 
temperature of the system. Using the criterion of Weeks et a/.  (13'14) for d, 
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one can easily evaluate the ~h value with the perturbation approximation 
for g(r). We have applied the Baxter formalism for g(r) with the Percus- 
Yevick closure. (15,16) 
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